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ABSTRACT

In previous publications it has been shown that no-reference video
quality metrics based on a data analysis approach rather than on
modeling the human visual system lead to very promising results and
outperform many well-known full-reference metrics. Furthermore,
the results improve when taking the temporal structure of the video
sequence into account by using multiway analysis methods. This
contribution shows a way of refining these multiway quality metrics
in order to make them more suitable for real-life applications and
maintaining the performance at the same time. Additionally, our re-
sults confirm the validity of H.264/AVC bitstream no-reference qual-
ity metrics using multiway PLSR by evaluating this concept on an
additional dataset.

Index Terms— Video quality metric, no-reference metric, mul-
tiway data analysis, multiway PLSR, trilinear PLS.

1. INTRODUCTION

The traditional method for designing video quality metrics tries to
model the human visual system (HVS) in order to reproduce the per-
ception of a human observer. This requires a sufficient understand-
ing of the HVS, which we currently do not possess. Therefore, we
choose the data-driven approach, which does not require this knowl-
edge. There have already been some contributions using a data ana-
lysis approach to build a no-reference video quality metric. Our
most promising metrics are based on the extraction of H.264/AVC
bitstream features from the video data which are used to train a re-
gression model [1, 2, 3]. Recently we have shown that the inclusion
of the temporal dimension by using multiway data analysis further
improves the prediction [1]. Mathematically, this can be achieved
using extended regression methods like the two-way version of prin-
cipal component regression (2D-PCR) [4] or multiway partial least
squares regression (multiway PLSR) [2]. PLSR itself has already
been used for the design of video quality metrics in [5, 6].

Although the metrics based on H.264/AVC bitstream features
show very good performance, they also have some drawbacks. In
general, the usage of H.264/AVC bitstream features limits the metric
to video material that has been encoded with this technology. This
is acceptable since H.264/AVC nowadays is the predominant video
encoding standard. Furthermore, the inclusion of the temporal di-
mension into the prediction model requires all training sequences to
consist of the same number of frames and also the sequence whose
quality is to be predicted needs to match this length. This problem
impedes the application of the metric in most fields as it is not feasi-
ble to train different regression models for each occurring length of
video sequences.

In this contribution we show a way around this second problem
by splitting all used video sequences into subsets of equal lengths.
A group of pictures (GOP) seems to be an adequate choice for the
length of those subsets. Consequently, the quality metric predicts a
quality value for each GOP of the video sequence. A quality predic-
tion for the complete sequence is calculated by taking the average
of the per-GOP quality values. This can be seen as an analogy to
subjective testing, where each observer gives a rating of the overall
quality of the complete video sequence.

Features extracted directly from the H.264/AVC bitstream have
been used by Eden [7] to estimate the PSNR of interlaced HDTV
video or Slanina et al. [8], who estimate the PSNR of video se-
quences in CIF resolution. Rossholm and Lövström [9] used bit-
stream features to estimate some other quality metrics additional to
the PSNR. Keimel et al. [1, 2, 3] refined the usage of bitstream fea-
tures in order to directly estimate the visual video quality.

In the following, we will first give an overview of the feature
extraction step, then discuss the multiway PLSR and point out the
changes that are required to make the metric length-independent. Fi-
nally, we will show the validity of the metric by comparing its pre-
diction performance to other no-reference metrics.

2. DESIGN OF THE VIDEO QUALITY METRIC

A video quality metric that is based on a data analysis approach uses
feature-data as input to train a prediction model. After the training
step the model can be used to predict the quality of unknown video
sequences from their features. The feature data used during the train-
ing is represented by the N ×M ×T array X, where N denotes the
number of sequences, M the number of features and T the length of
the video sequences in frames. The N ×1 column vector y contains
the subjective quality determined in subjective tests as ground truth.
The aim is to find the unknown M × 1 × T weight array B that
expresses the visual quality using only the feature data:

y =
1

T

T∑
t=0

X(:, :, t)B(:, :, t) (1)

2.1. H.264/AVC Bitstream Feature Extraction

A modified version of the H.264/AVC JM reference software is used
to extract M = 17 different features per slice resulting in an M ×T
feature matrix per sequence. The feature extractor parses the Net-
work Abstraction Layer (NAL) of the H.264/AVC byte stream and
extracts some statistical data from the Video Coding Layer (VCL) af-
ter reversing the entropy coding. Over the course of the extraction, it
descends from the slice layer to the macroblock and submacroblock
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layers. The following list gives a short overview of the extracted
features, a more detailed explanation can be found in [2, 3]:

• Slice type: I-, P- or B-slice

• Size of the slice in kilobits

• Average QP per slice and variation of QP in the slice

• Percentages of different macro- and submacroblock types per
slice

• Motion vector lengths (average and maximum)

• Motion vector errors (average and maximum)

In this contribution we focus on coding artifacts rather than qual-
ity degradation caused by the transmission of video. The reason for
this is that our feature extraction tools only works reliably on intact
bitstreams.

2.2. Trilinear Partial Least Squares Regression

In the case of a two-way feature matrix, principal component regres-
sion (PCR) or bilinear partial least squares regression (PLS1) are
suitable methods to build a regression matrix. In the three-way case
we focus on, trilinear partial least squared regression (Tri-PLS1) is
required. This multidimensional extension of PLS1 was introduced
by Bro [10]. In Tri-PLS1 the components are determined depending
on weights gained along both the m and the t dimension, whereas in
PLS1 the components are only dependent on the m dimension.

Algorithm 1 shows an iterative algorithm that describes the de-
composition of X into its components wM and wT along both fea-
ture dimensions. Z in step 2 of the algorithm represents the matrix
of all zmt with

zmt =

N∑
n=1

ynxnmt. (2)

The scores tn corresponding to each sample n can then be written
with the components as

tn =

M∑
m=1

T∑
t=1

xnmtw
M
mwT

t . (3)

Algorithm 1 Trilinear PLSR (Tri-PLS1)

center X and y
X1 = X,y1 = y
f = 1

1: repeat
2: calculate Z
3: determine wm

f wt
f by SVD of Z

4: calculate tf . T = [t1 · · · tf ]
5: bf = (T>T)−1Tyf

6: Xf+1 = Xf − tfw
m
f (wt

f )
> and yf+1 = yf −Tbf

7: f = f + 1
8: until proper description of yf

From the extracted components and scores, we can then obtain
an estimate of the T×M weight matrix B̂ for direct regression of an
1×M ×T slice of the feature array Xu representing the features of
an unknown sequence. The quality estimation ŷu for this unknown
sequence can be written as

ŷu = b̂0 +
1

T

T∑
t=1

xu,tb̂t (4)
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Fig. 1. Length-independent quality prediction

where xu,t denotes the t-th column vector of Xu and b̂t the t-th row
vector of B̂

2.3. Length-Independent Quality Estimation

The matrix multiplication in (4) requires that Xu and B̂ share the
same dimension T . This means that the video sequences used in
the training of the regression model need to have the exact same
number of frames as the unknown sequence. For any real application
of the quality metric this is a severe drawback, since this condition
generally cannot be fulfilled.

To solve this issue, we propose to split up the video sequence in
small subsets of equal length and predict the quality of each subset
individually. In general it is advisable to split H.264/AVC-encoded
video only at intra-coded frames (I-Frames) – a procedure that seems
sensible in this case as well, especially as we use H.264/AVC bit-
stream features.

In our improved prediction model we split all video sequences
into G subsets of TG frames, the length of one GOP. As a conse-
quence, we obtain an NG × M × TG feature array X to train the
model, where NG denotes the total number of video subsets. If all
sequences in the training set have the same length, then NG = NG.
Fig. 1 illustrates the difference in dimensionality between the feature
arrays depending on whether complete sequences or GOP-subsets
are used. In summary, the training set consists of much more but
also much shorter sequences.

Since we do not have subjective quality data per GOP, the same
value yn is used for all subsets that were cut from the video sequence
with the MOS value yn. The vector of the dependent variables y is
expanded accordingly from N×1 to NG×1 by duplicating elements.

The training of the regression model itself remains unchanged
and is done as described in section 2.2. To predict the quality ŷu
of an unknown sequence, the sequence is split up into its G indi-
vidual GOPs of length TG. Clearly TG has to be the same as in
the training but this is much more likely than assuming the equal
number of frames for the complete sequence. After predicting the
quality for each GOP, ŷu is set to the mean of the predictions of all
GOP-subsets. Fig. 2 shows an example for the prediction results of
the proposed metric. In particular, it illustrates that the average of
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Fig. 2. Example for the different prediction models, video sequence
Stephan at 265 kbit/s

the per-GOP quality prediction is fairly close to the quality estima-
tion of a Tri-PLS1 metric applied on the complete sentence and the
subjective MOS value.

2.4. Sigmoid Correction

In subjective testing, the ratings at the boundaries of the rating scale
show a nonlinear nature and saturate much earlier. To take this into
account, we correct all prediction values ŷ using a fixed sigmoid
correction function [5]

ŷS =
1

1 + e−5·(ŷ−0.5)
. (5)

This function is not adapted to the actual data, but is rather a fixed
part of the quality metric. ŷS represents the final result of the quality
prediction.

3. PERFORMANCE EVALUATION

In order to demonstrate and evaluate the performance of the pro-
posed metric, we compare it to other data analysis based metrics and
some other well-known video quality metrics. All metrics were ap-
plied to the same dataset described in the following.

3.1. Dataset Used for Evaluation

For the evaluation of the proposed metric, we used parts of the
dataset provided by IT-IST [11]. We chose 4 different bitrates in
the range from 32 kbit/s to 2048 kbit/s for each of the 12 different
video sequences in the dataset: Australia, City, Coastguard, Con-
tainer, Crew, Football, Foreman, Mobile, Silent, Stephan, Table and
Tempete (cf. Fig. 4). Hence the set of videos consisted of N = 48
video sequences in common intermediate (CIF) resolution (352 ×
288). The sequences had been encoded using H.264/AVC with a
fixed GOP-length of TG = 15 frames. We removed the first GOP,
as it consists of only 13 frames, and also the last few frames because
the last GOP is incomplete. In total there are T = 240 frames per
sequence and G = 16 GOPs per sequence which gives NG = 768
subsets of video to train the model with.

IT-IST provides the results of subjective quality assessment for
all video sequences in their data set. The test was conducted with 42
participants using degradation category rating as described in ITU-T
Recommendation P.910. We assume that the MOS values are equally
valid for the slightly shortened sequences we used.

To evaluate the performance of the new metric (referred to as
Tri-PLS1-GOP), the multi-way quality prediction without splitting
the sequences into GOPs as described in [2] (Tri-PLS1) was also
applied to the data set. For further comparison the well-known full-
reference video quality metric SSIM [12] and the PSNR were calcu-
lated for the data set as well.

3.2. Cross Validation

In the evaluation of data analysis methods it is important not to use
the same data for the training and the validation. Therefore, we per-
formed cross validation by leaving out 4 video sequences of the same
content and used the remaining 42 as the training set. Afterwards,
the quality of the sequences that had been left out were predicted us-
ing this model. In doing so, we obtain quality predictions for all 48
sequences without using the same data for training and validation.

3.3. Results

The performance of the quality metrics is evaluated by calculating
both the Pearson correlation coefficient and the Spearman rank or-
der correlation coefficient between the predicted quality ŷ and the
corresponding subjective results y. The values for the proposed met-
rics are shown in Table 1 along with the Root Mean Square Errors
(RMSE). Fig. 3 shows scatter plots of the quality estimates against
the mean opinion scores for Tri-PLS1, Tri-PLS1-GOP and the full-
reference metric SSIM.

Both the Pearson and the Spearman coefficients suggest a slight
decrease in prediction performance when using Tri-PLS1-GOP in-
stead of Tri-PLS1. The same statement can be made when look-
ing at the RMSE. Nevertheless, the difference of the correlations is
only visible in the third decimal digit and generally the correlation
is on a very high level with both methods. Thus, one can hardly
speak of a real disadvantage of the GOP-method – especially when
we consider the advantage of length-independence. Moreover, the
length-independence also allows us to estimate the visual quality per
GOP, while still maintaining the same overall quality prediction as
the Tri-PLS1 as shown in Fig. 2.

Table 1. Prediction performance

Pearson Spearman RMSE

PSNR 0.723 0.777 0.346
SSIM [12] 0.850 0.871 0.172

Brandão et al. [11] 0.938 0.949 0.110

PLS1 [3] 0.935 0.919 0.117

tri-PLS1 0.951 0.962 0.108
tri-PLS1-GOP 0.947 0.955 0.125

Both metrics clearly outperform the full-reference metrics
PSNR and SSIM. In comparison to the no-reference metric by
Brandão and Queluz [11] based on the same dataset, our metric
shows better correlation values for quality estimation on the used
dataset.
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Fig. 3. Scatter plots of the compared metrics Tri-PLS1, Tri-PLS1-GOP and the full-reference metric SSIM

In addition, we performed quality estimation on the same dataset
with a PLS1-based metric similar to the one described in [3]. The
dimensionality of the three-way feature array was reduced by tempo-
ral pooling as discussed in [1]. On the one hand the results confirms
the results from [3] – the PLS1 metric produces similar correlation
values for the dataset used here. On the other hand this again shows
that the addition of the temporal dimension leads to better results. In
our case especially the Spearman coefficient increases clearly.

4. CONCLUSION

We improved the design of video quality metrics using multiway
data analysis by making the training and the quality prediction inde-
pendent of the length of video sequences. The proposed no-reference
metric is based on features extracted from H.264/AVC bitstreams
and makes use of the GOP-structure of H.264/AVC encoded video.

It turns out that averaging the per-GOP estimated quality val-
ues of a video sequence results in a quality estimation that corre-
lates very well with the perceived quality as measured in subjective
tests. Our results show that this metric performs equally well as
a corresponding length-dependent metric and outperforms common

full-reference metrics.
Apart from that, the main advantage of the presented metric is

its improved universality when it comes to real world application.
What remains is the drawback that all video sequences need to be
encoded with the same GOP-length, but this is less inconvenient than
demanding equal lengths for the complete sequences and very com-
mon in broadcasting applications.

Additionally, our results confirm the validity of the multiway
PLSR-based metric previously presented by Keimel et al. [2].
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